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We examine the response of type II excitable neurons to trains of synaptic pulses, as a function of the pulse
frequency and amplitude. Similarly to the case of harmonic inputs, these neurons exhibit a resonant behavior
also for pulsed inputs. We interpret this phenomenon in terms of the subthreshold response of the neuron. In the
presence of dynamical trains of input pulses whose frequency varies continuously in time, the receiving neuron
synchronizes episodically to the input pulses, whenever the pulse frequency lies within the neuron’s locking
range. The results are obtained both in numerical simulations of the Morris-Lecar model and in an electronic
implementation of the FitzHugh-Nagumo system, evidencing the robustness of the phenomenon.
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I. INTRODUCTION

Neurons exhibit all-or-none responses to external input
signals. The main function of this thresholding behavior is to
process information in a way that is efficient and robust to
noise [1]. Input signals received by most nonsensory neurons
take the form of pulse trains, coming from the spiking activ-
ity of neighboring neurons. Therefore, in order to understand
the mechanisms of information processing in neural systems,
it is very important to characterize in detail the response of
neurons to pulse trains. Furthermore, realistic pulse trains are
intrinsically dynamical, with an instantaneous firing fre-
quency that varies continuously in time. It is therefore nec-
essary to assess the influence of this nonstationarity in the
neuronal response. This paper addresses these questions.

Most studies of driven neurons have been restricted so far
to harmonic driving signals [2-6]. Many of these works have
shown that for certain types of neurons, i.e., those exhibiting
what is called type II excitability, a resonant behavior arises
with respect to the external driving frequency [7-9]. Excit-
ability in those neurons is usually associated with an
Andronov-Hopf bifurcation, which leads to the existence of
subthreshold oscillations in the excitable regime. When the
frequency of these oscillations equals that of the harmonic
driving, a resonance arises.

A similar resonant behavior exists for pulsed inputs. In
that case, the same pulse train impinging on two different
neurons can elicit a response on only one of them, i.e., on the
one that is tuned to resonate with the incoming pulse fre-
quency. Izhikevich and co-workers [10-12] proposed this
type of phenomenon as a mechanism for selective multi-
plexed communication, whereby a single neural channel can
be used to transmit multiple signals, each of which is de-
tected by distinct groups of neurons depending on their in-
terspike frequency. Here we pursue this idea further, analyz-
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ing the resonant behavior in terms of the subthreshold
response of the neuron. We also show that this behavior leads
to episodic synchronization between the neuron’s output and
an input with dynamically varying firing rate. Episodic syn-
chronization has previously been reported in coupled lasers
with intrinsic dynamics [13]. Here we extend that property to
externally driven excitable systems. Two types of systems
have been investigated: a Morris-Lecar model (Sec. IT) and
an electronic implementation of the FitzHugh-Nagumo
model (Sec. III). The Morris-Lecar model is chosen as a
compromise between a realistic representation of neuronal
dynamics and an analytically tractable system. Furthermore,
this model has the advantage that types I and II excitability
can be obtained with a single parameter change (see Table 1
below). We use the FitzHugh-Nagumo circuit, on the other
hand, with two goals: (i) to show that the reported results are
independent of the particular model used, and (ii) to test the
intrinsic robustness of the behavior in an experimental set-
ting where noise and parameter mismatches between the in-
put and output circuits are unavoidable.

II. MORRIS-LECAR MODEL

A. Model description

We consider neurons whose dynamical behavior is de-
scribed by the Morris-Lecar model [14],

av 1
7‘;= C_m(lapP_IiOH_Isyn) +DE(), (1)
d
d_VtV = AWV W..(V) - W], (2)

where V and W represent the membrane potential and the
fraction of open potassium channels, respectively. C,, is the
membrane capacitance per unit area and ¢ is the decay rate
of W. The neuron is affected by several currents, including
an external current /,, a synaptic current /y,, and an ionic
current given by
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TABLE 1. Parameter values of the Morris-Lecar and synapse
models used in this work.

Parameter Morris-Lecar TII (TI)
C 5 uF/cm?

8k 8 mS/cm?

8L 2 mS/cm?

8ca 4.0 mS/cm?

Ve 80 mV

vV ~60 mV

Ve 120 mV

Vi -12mV

Vi 18 mV

Vi 2mV (12 mV)
Vi 17.4 mV

@ 1/15 ms™!
Parameter Synapse

@ 2.0 ms~! mM™!

B 1.0 ms™!

Tmax 1.0 mM

8syn (specified in each case)
7-syn 1.5 ms

E 0 mV

Lin = 8caM(V)(V = V&) + g W(V = Vi) + g, (V= V)).
3)

In this expression, g, (a=Ca,K,L) are the conductances and
V2 the resting potentials of the calcium, potassium and leak-
ing channels, respectively. We define the following functions
of the membrane potential:

M.(V) = %[1 +tanh< V;VM' )} (4)
M2
Wo(V) = %{1 +tanh(v‘_/VWl>], (5)
w2
B V=V
A(V)= cosh(—sz2 >, (6)

where Vi1, Vi, Vi, and Vi, are constants to be specified
later. The last term in Eq. (1) is a white Gaussian noise term
of zero mean and amplitude D and takes into account the
synaptic background in which a neuron is embedded.

In the absence of noise, an isolated Morris-Lecar neuron
shows a bifurcation to a limit cycle for increasing applied
current I, [6]. Depending on the parameters, this bifurca-
tion can be of the saddle-node or the subcritical Hopf types,
corresponding to either type I or type II excitability, respec-
tively. The specific values of the parameters used are shown
in Table I [15]. For these parameters, the threshold values of
the applied current under constant stimulation are
39.7 uA/cm? for type I and 46.8 uA/cm? for type II.
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In this paper we analyze the behavior of a neuron driven
by a synaptic current. To that end, we use the simplified
model of chemical synapse proposed in [16], according to
which the synaptic current is given by

Isyn=gsynr(t)(v_Es)’ (7)

where g, is the conductance of the synaptic channel, r()
represents the fraction of bound receptors, and E; is a param-
eter whose value determines the type of synapse: if E; is
larger than the rest potential the synapse is excitatory, if
smaller it is inhibitory; here we consider an excitatory syn-
apse with E,;=0 mV. The fraction of bound receptors, r(z),
follows the equation

= alTI0 1)~ Br. ®

where [T]=T,,x(To+ 7oy —1) 8(t=T,) is the concentration of
neurotransmitter released into the synaptic cleft by the pr-
esynaptic neuron, whose dynamics is also given by Egs. (1)
and (2) with no synaptic input. « and B are rise and decay
time constants, respectively, and 7 is the time at which the
presynaptic neuron fires, which happens whenever the pr-
esynaptic membrane potential exceeds a predetermined
threshold value, in our case chosen to be 10 mV. This thresh-
olding mechanism lies at the origin of the nonlinear character
of the synaptic coupling. The time during which the synaptic
connection is active is roughly given by 7. The values of
the coupling parameters that we use [16] are specified in
Table I. The equations were integrated using the Heun
method [17], which is a second order Runge-Kutta algorithm
for stochastic equations.

B. Response diagram of a periodically driven neuron

First we analyze how a Morris-Lecar neuron responds to
periodic inputs of varying frequencies. Specifically, we ask
how large the signal needs to be in order to elicit spikes in
the receiving neuron. It is also important to characterize the
frequency of spiking in terms of frequency of the input. As
mentioned in the Introduction, this question has already been
addressed, in the case of harmonic inputs, for different neu-
ronal models, including the Morris-Lecar model [18]. We
will now compare these results with those obtained for a
pulsed input. For the Morris-Lecar model, one can expect a
completely different behavior between the type I and the
type II cases, given that the bifurcation to a limit cycle is a
saddle-node bifurcation in the former case and a Hopf bifur-
cation (with the well-known eigenfrequency associated to the
spiral fixed point) in the latter.

We first consider an isolated neuron without synaptic in-
puts (/;,,=0), but subject to a harmonic modulation of the
applied current /,,, with the form,

Iapp

=1Iy+ A cos2mfiyt). 9)
In order to quantify the response of the neuron to this har-
monic input, we plot in Fig. 1 (in grayscale) the ratio be-
tween the output and the input frequencies, f,,/fi,, as a
function of the amplitude A and frequency f;, of the applied
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FIG. 1. Response diagram of Morris Lecar neurons for a har-
monic input: f,,/fi, is plotted in greyscale as a function of the
amplitude and frequency of the applied current. Left plots: type I
neuron (with Iy=39 uA/cm?); right plots: type II neuron (with I,
=46 uA/cm?). The response is measured for increasing A in the
upper plots, and for decreasing A in the lower plots.

current (9). The figure compares the resulting response dia-
grams of type I and type II neurons. To obtain these plots, A
is varied for fixed f, while using as initial condition for a
given A the final state of the previous A value. In the upper
panels A increases, thus showing the stability of the rest
state, while in the lower panels A decreases, this indicating
the stability of the limit cycle. The figure shows that type II
neurons have a region of bistability, where the fixed point
and the limit cycle coexist. In contrast, for type I neurons the
two plots are basically the same, indicating an absence of
bistability.

There is another qualitative difference between types I
and II that can be observed in Fig. 1. In the type I neuron, the
critical modulation amplitude for spiking increases mono-
tonically with the frequency of the stimulus. On the other
hand, in the type II neuron the critical amplitude exhibits a
minimum for a given nonzero frequency, in our case around
20 Hz. This behavior can be understood as resulting from the
subthreshold damped oscillations characteristic of type II ex-
citability [6].

We now characterize the response of a neuron to an input
train of periodic synaptic pulses of varying frequencies and
amplitudes. To that end, we drive the neuron with the synap-
tic current Eq. (7), with g,,=A and the dynamics of r(z)
being described by Eq. (8) with presynaptic firings occurring
periodically with frequency f;,. In this way, we can quantify
the response of the neuron in terms of the efficiency in re-
sponding to a periodic synaptic input with a given frequency
and amplitude, as shown above in the harmonic case. Figure
2 shows the corresponding response diagrams, i.e., fou/fi, as
a function of A and f;,, for both excitability types and for
increasing (top) and decreasing (bottom) A. The behavior
shows features common to the harmonic case, such as the
existence of the same resonant frequency in type II for both
kinds of inputs. But there are also very interesting differ-
ences between them, especially in the high and zero fre-
quency limits.
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FIG. 2. Response diagrams of Morris Lecar neurons to a peri-
odic synaptic (pulsed) input: f,,/fi, is plotted (in greyscale scale)
as a function of the amplitude and the frequency of the synaptic
current. Left plots: type T neuron (with 7,,,=39 wA/cm?); right
plots: type II neuron (with 7,,,=46 uA/ cm?). The response is mea-
sured for increasing A in the upper plots, and for decreasing A in the
lower plots.

The main difference between the harmonic and pulsed
input cases is the approach to the DC threshold current (
39.7 uA/cm? for type I and 46.8 wA/cm? for type II). While
in the former case this happens for frequencies approaching
zero (type 1) or resonance (type II), for pulsed inputs it hap-
pens for high frequencies, i.e., when the signal period is of
the order of the pulse width. This is the reason for the ap-
pearance of a spiking region at high frequencies for pulsed
inputs, which is absent in the harmonic case [19]. Also, in
the low-frequency limit one can observe, for pulsed inputs, a
constant value of the critical amplitude. This is related with
the fact that, when the input period is high enough with
respect to the pulse width, the system response is essentially
independent of the period.

C. Subthreshold dynamics

Experimental studies have shown that when the mem-
brane potential of a type II neuron is driven by a small os-
cillatory current in the subthreshold regime, it exhibits a pre-
ferred response to certain input frequencies [20-24]. The
connection between subthreshold resonance and firing fre-
quency preferences was studied, for the case of harmonic
driving, in [8,9]. With this in mind, we have analyzed the
subthreshold dynamics of the Morris-Lecar model, both for
harmonic and pulsed applied currents [25]. Below threshold,
the model Egs. (1) and (2) (without noise and synaptic cur-
rent) can be linearized around its stationary solution, and an
approximate solution can be obtained for small stimulus am-
plitude. For a harmonic input, i.e., I=1I, sin(wt) with @

=21f, one can calculate the impedance as a function of the

. [V(1)
input frequency as Z(w)= gy, where |-+| denote the root-

mean-square (RMS) value of the signal. Except for a con-
stant factor, the impedance can be expressed as
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FIG. 3. (Color online) Impedance for subthreshold harmonic (a)
and pulsed (b) input current from theoretical calculations (solid
line) and simulations for small [A=0.5 wA/cm? in (a) and A
=0.01 mS/cm? in (b)] and high amplitude [A=0.9 uA/cm? in (a)
and A=0.1 mS/cm? in (b)] of the stimuli (dashed-dotted and dashed
lines, respectively). In (a), the black curve corresponds to Eq. (10);
in (b) it corresponds to Eq. (13).

Z( )_\/ 4 + o
=N B2 4 2be(0? - ad) + (@ + )P+ )
(10)

where a and b represent the partial derivatives of the right-
hand side of Eq. (1) with respect to V and W, respectively,
while ¢ and d are the corresponding derivatives of the right-
hand side of Eq. (2).

For parameters corresponding to a type II neuron, Z(w)
displays a maximum at a given frequency f,.., [Fig. 3(a)],
indicating that, for small departures from resting state, the
subthreshold membrane potential has maximal response at
that frequency. For the parameters chosen in this work, f.
=21 Hz, while the minimum in the response diagram for
harmonic inputs (Fig. 1, right) is f=19 Hz. This difference
is due to the small amplitude approximation, as can be seen
in Fig. 3(a), which compares the theoretical result (10) with
numerical simulations of model Egs. (1) and (2) for two
different ampitudes of the input current (always in the sub-
threshold regime). The figure shows that the larger that am-
plitude, the larger the deviation of the impedance maximum
from the linearized calculations.

If the external current /., is not harmonic but pulsed, we
can write it in terms of its Fourier series:

o

L) =1, 2 age™. (11)

k=—o0

Solving the linearized model of Egs. (1) and (2) for each
Fourier component of this input current, one can obtain an
impedance Z,(w) from Eq. (10) for each component, and find
the membrane potential for small departures from its resting
state:
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[

v(n) =1, 2 aZ(w)e, (12)

k=—oe

where v=V-V,,. Dividing the RMS values of Egs. (12) and
(11) leads to the total impedance of the system in this case
which reads

> Zi(w)a;
k=—x
>

k=—o

(13)

In the subthreshold dynamics, the shape of the synaptic
pulses can be reasonably well approximated by square
pulses. For a train of rectangular pulses of width 7and period
27/ w, the Fourier coefficients are a;=5-(e7**™=1). We
calculated the theoretical prediction of the impedance for
rectangular pulses of width 7=5 ms, taking the Fourier series
up to k=10 000 in Eq. (13). The result is plotted as a black
curve in Fig. 3(b). That figure also shows the results from
numerical simulations for synaptic inputs given by Eq. (8) at
two values of the driving amplitude. Again, the subthreshold
response shows a maximum at the frequency f,., correspond-
ing to the fundamental frequency, but it also shows a second
local maximum at the frequency f,.,/2 corresponding to first
subharmonic. This local maximum at f,.,/2 also appears in
the theoretical prediction of the impedance calculated from
Eq. (13). The agreement obtained between simulation results
and the theoretical prediction from Eq. (13), supports the
approximation of synaptic pulses by square pulses of similar
width in the low-amplitude subthreshold regime.

D. The dynamical case: Variation of the input frequency

In previous sections, we have characterized the behavior
of a neuron subject to a pulsed synaptic current of fixed
frequency. Our results corroborate that type II neurons ex-
hibit a resonant behavior, defined by the existence of an op-
timal frequency for which the critical amplitude of spiking is
minimal. The question now is, what happens if the frequency
of the input train varies dynamically, which is a more realis-
tic situation for a nonsensory neuron. This kind of stimulus,
in the subthreshold regime, is commonly used to measure the
subthreshold behavior of a neuron and is referred to as ZAP
[impedance (Z)-Amplitude-Profile] stimulus. Here we con-
sider the case where the stimulus is not subthreshold, and
examine the dependence of the neuron’s response on the
variation rate of the input frequency.

To address this issue, we made simulations with two
Morris-Lecar neurons coupled unidirectionally through a
chemical synapse. The input neuron operates in the limit
cycle regime and is considered to be type I, so that we can
control its spiking frequency by varying its applied current
Ipp [6]. This neuron is synaptically coupled to a type IT neu-
ron operating in an excitable regime, with a coupling
strength g, such that the receiving neuron only fires in a
given range of frequencies (i.e., the coupling is such that the
amplitude of the input pulses lies below the critical ampli-
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FIG. 4. (Color online) Upper plot: instantaneous frequency ver-
sus time of the input neuron (black stars) and of the receiving neu-
ron (triangles). The three horizontal dashed lines indicate the
boundaries of the locking region for the selected synaptic strength
(85yn=0.43 mS/cm?); the 1:1 region is specifically shown, and la-
beled at the right. Lower plot: time series of the receiving neuron.

tude at zero frequency but above its minimum at resonance;
this corresponds, e.g., to a horizontal line at around 0.4 mV
in the right plots of Fig. 2).

Figure 4 shows what happens when the firing frequency
of the input neuron first increases and then decreases in the
range 13—28 Hz. The plot compares the instantaneous firing
frequency of both neurons, relating them with the boundaries
of the locking range of the second neuron, indicated by hori-
zontal dashed lines; the 1:1 locking region is specifically
shown. It can be seen that as the input frequency increases
(first half of the plot), the receiving neuron starts spiking
with approximately 1:1 frequency ratio when the input fre-
quency falls within the corresponding locking range, the ra-
tio decreasing when the input frequency exceeds ~20 Hz.
Spiking persists while the input frequency remains in the
wider (not 1:1) locking range, and is maintained even for a
while after the input finally exits the locking region. A simi-
lar behavior is observed for decreasing frequencies, but the
“inertia” observed at the exit of the locking region is larger
than for increasing frequencies. The time series of the receiv-
ing neuron is shown in the lower plot; the episodes of syn-
chronization with the input signal are clearly observed.

In order to understand the dynamic driving effects re-
ported above, and particularly the locking asymmetry ob-
served between an increase and a decrease in the input firing
frequency, we now study the neuron response to a controlled
variation of the frequency for different variation rates. To
that end, we consider a synaptic input whose frequency is
uniformly changing from one cycle to the next at a rate f”
=Af/At, and measure the response of the neuron in terms of
its instantaneous output frequency f,,. Figure 5 shows the
response diagram for a fixed synaptic strength and different
frequency variation rates, for both increasing and decreasing
input frequencies f;,. The figure shows that the slower the
variation rate, the closer the response is to an adiabatic pas-
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FIG. 5. (Color online) Response of a type II neuron to a con-
trolled variation of the input frequency, for two different rates of
this variation, f'=Af/At, for gy,=0.38 mS/cm?, compared with
the adiabatic response (which is a horizontal cut of the response
diagram at A=0.38 mS/cm?).

sage, as expected. Additionally, the results indicate that the
persistence of the output neuron in the firing state (even
when the input signal has left the locking region) is much
larger when the frequency decreases than when it increases.
This is consistent with the asymmetric response exhibited in
Fig. 4, and can be expected to arise from the asymmetric
shape of the response function f,/f;,, which is equal to 1
for small frequencies and moderately smaller than 1 for large
frequencies. Evidently the neuron prefers to respond in a 1:1
regime, which produces a larger persistence for decreasing
frequencies.

To further quantify the approach to the adiabatic response
in terms of the rate of change in the input frequency, we can
define a distance D to this adiabatic response as the absolute
value of the difference between the area of the neuron’s re-
sponse diagram at a given rate f’, as plotted in Fig. 5, and the
area of the adiabatic response:

a fin ) (fin ) :|
D= s (A dfi. 14
ff |: (fout Vi fout adiab f ( )

min

This measure is plotted in the inset of Fig. 5 as a function of
the rate of change in the input frequency. The plot shows that
the distance increases as the frequency changes more rapidly,
as expected.

The dynamical response described in the previous para-
graphs leads to episodic synchronization when the input
pulse train exhibits a varying firing rate. This situation is
shown in Fig. 6, in which an input pulse train whose firing
rate takes the form, by way of example, of an Ornstein-
Uhlenbeck noise with amplitude A,,=0.1 mA and correla-
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FIG. 6. (Color online) Upper panel: Instantaneous frequency of
the synaptic input (black stars) and of the output neuron (triangles)
as a function of time. The horizontal dashed lines delimit the region
of locking according to the adiabatic calculations of Fig. 2 for the
synaptic strength used (gsyn=0.38 mS/cm?). Lower panel: time se-
ries of the input signal.

tion time 7,,=1 s in the ~20-36 Hz range. The response of
the second neuron for g,,,=0.38 nS is displayed in the bot-
tom plot, and exhibits clear episodes of synchronization with
the input signal, whenever the firing rate of the later falls
(approximately) within the locking range of the neuron for
the coupling strength chosen (represented by horizontal
dashed lines in the figure). In that way the receiving neuron
acts as a bandpass filter for input pulse trains.

E. Influence of multiple synaptic inputs and background noise

So far we have analyzed the rather unrealistic situation
where a neuron receives a single synaptic input. But neurons
are embedded in a tangled web of thousands of synaptic
connections, part of which may be used by the incoming
signal that the neuron is supposed to respond to, the way we
have described above. The rest of synaptic connections give
rise to synaptic noise. In this section, we explore the effect in
the neuron’s response of both multiple synaptic input trains
and of background noise.

We first consider the case in which multiple information-
carrying inputs act upon the neuron. Figure 7 shows the re-
sponse of a neuron to 1000 trains of synaptic pulses with the
same average frequency, which increases in time as shown in
the top panel. The bottom panel displays the neuron’s re-
sponse. In the top trace, all input trains occur synchronically;
this is equivalent to the single input case discussed above.
When the common input frequency crosses the locking range
of the neuron, indicated by dashed lines in the top panel of
Fig. 7, the neuron responds. In the middle trace, the pulses
are displaced randomly an amount up to 37, and the neuron
still responds in the correct frequency values, although the
range is slightly smaller. Finally, in the bottom trace a Gauss-
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FIG. 7. (Color online) Response of a neuron to 1000 synaptic
inputs with the same average frequency [increasing with time as
shown in (a)]. (b) shows the response of the neuron in three cases:
(top) the pulses occur synchronically, which is basically the single
synapse case discussed above; (middle) the pulses are displaced in
time a random amount up to 37,; (bottom) like the previous one,
but with noise of intensity D=0.1 mV/ms in the applied current. In
the top panel, horizontal dashed lines indicate the limits of the
locking region of the neuron. In the bottom panel, the time traces
are displaced vertically an arbitrary amount to ease comparison.

ian white noise of intensity D=0.1 mV/ms is added to the
right-hand side of the membrane potential equation Eq. (1),
representing the background activity of all other synapses
that do not carry information at the selected frequency. In
that case the neuron responds in a wider frequency region
around the correct frequency range. This indicates that the
phenomenon reported above is robust in the presence of mul-
tiple synapses.

Noise can also help the system to responsed even when
the stimulus is kept below threshold. Figure 8 shows that the
neuron does not fire in the absence of noise (D=0, top trace),
but it does respond at a frequency around f,.,=21 Hz for
low noise amplitude (D=0.12 mV/ms, middle trace), and it
fires at a wider range of frequencies when the noise intensity
increases (D=0.18 mV/ms, bottom trace).

III. FITZHUGH-NAGUMO CIRCUIT

In order to show that the behavior reported in the previous
section is generic and robust, we have reproduced the results
with an electronic neuron, specifically with an electronic
implementation of the FitzHugh-Nagumo (FHN) model [26].
The circuit has been previously described in [27], where syn-
chronization between two FHN neurons was studied. A de-
tailed description of the circuit can be found in [28]. In our
particular setup, a FHN neuron is excited by a pulsed input
of variable frequency.

Following the procedure of Sec. II, we first determine the
response of the electronic neuron to a train of periodic pulsed
inputs of fixed frequency. Specifically, we analyze the output
frequency of the neuron, which is given by the inverse of the
interspike interval. The input pulses have the form of square
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FIG. 8. (Color online) Response of the neuron in the presence of
noise. (a) shows the frequency of the main synaptic input as a
function of time. In (b), the upper trace shows the behavior in the
absence of noise, while the middle and lower traces show the re-
sponses for Gaussian white noises of intensities D=0.12 mV/ms
and D=0.18 mV/ms, respectively.

pulses of 10 ms width. Figure 9 shows the corresponding
response diagram, obtained by increasing the amplitude of
the input pulses until the neuron starts firing. Similar results
(not shown here) are obtained with pulses of different width.
At first glance, we can observe a resonance minimum around
fin=15 Hz, which confirms that the FHN neuron is of type II.
Two local minima are also observed around f;,=7.5 Hz and
fin=31 Hz. It is worth noting that despite the spike threshold
is low, moderately large values of the input voltage are re-
quired to induce spiking at the input frequency (see region
1:1 in Fig. 9).

We have thus a type II electronic neuron that exhibits a
resonance at a frequency close to 15 Hz. Following again the
approach of Sec. II, we now subject the circuit to pulse trains
with time-varying frequency. Specifically, the pulse fre-
quency is made to depend linearly with time (with both posi-
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5 10 15 20 25 30 35 40 45 50
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FIG. 9. Response diagram of an electronic FHN neuron for a
periodic input of pulses with 10 ms width. The limit of the region of
1:1 resonance is marked with a dashed line.
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FIG. 10. Response of a FHN electronic neuron to a pulsed input
of variable frequency. The input voltage corresponds to the value
marked by A in Fig. 9. (a) shows the instantaneous frequency of the
input pulses (solid line) and of the neuron’s output (stars). The
shaded region corresponds to the frequency ranges for which lock-
ing should occur. (b) displays the time evolution of the membrane
voltage of the electronic neuron, which corresponds with the volt-
age U2 at condenser Cl1, in the circuit given in [28].

tive and negative slope). Similar results (not shown here) are
obtained with sinusoidal variations. The neuron response to
this dynamical input is shown in Figs. 10 and 11, where two
different input voltages, corresponding to the values denoted
as A and B in Fig. 9, have been applied.

In the case of Fig. 10, the input signal scans the region
marked with A in Fig. 9. The upper plot shows the instanta-
neous frequency of the input train (solid line) and of the
FHN neuron (stars). Figure 10(b) plots the neuron’s output.
The results show that the neuron pulses when the input fre-
quency lies within the resonance regions given in Fig. 9, and
highlighted in gray in Fig. 10(a). This behavior is an agree-
ment with the observations made in the Morris-Lecar model.
The fact that no inertia effects are seen when the input fre-
quency sweeps past the resonance region is due to the fre-
quency variation rate being very slow with respect to the
characteristic time scales of the system (adiabatic limit).

Figure 11 shows the system’s behavior for a different
value of the input voltage (marked as B in Fig. 9), for which

f (Hz)

Vspk (V)

N L L | PR [ P B L
20 40 60 80 100 120 140 160 180 200
time (s)
FIG. 11. Response of a FHN electronic neuron to a pulsed input
of variable frequency. The input voltage corresponds to the value

marked by B in Fig. 9. Figure layout is as described in the caption
of Fig. 10.
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the input frequency encounters three resonance regions as it
varies. Accordingly, the electronic neuron fires whenever the
input frequency lies inside any these regions, exhibiting clear
episodes of synchronization. In other words, the neuron acts
as a band-pass filter, with a frequency range that depends on
the input voltage level according to its response diagram.

IV. DISCUSSION

Neurons are information-processing devices. The nature
of coding in neuronal systems is still an open question. One
of the important features of neuronal dynamics for informa-
tion coding is the instantaneous firing rate, or time interval
between spikes. Neuronal systems must therefore be able to
distinguish between firing rates. We have analyzed a way to
accomplish that, through the resonant behavior exhibited by
type Il neurons. A population of neurons with different tun-
ing characteristics, and therefore distinct locking ranges,
should be able to distinguish between different incoming
pulse frequencies by activating selectively different subpopu-
lations that respond selectively to different frequencies.

We have systematically analyzed the response of type I
and II neurons to pulsed driving, compared it with the stan-

PHYSICAL REVIEW E 74, 061910 (2006)

dard case of sinusoidal driving, and observed the resonant
behavior of type II neurons. This phenomenology leads to
episodic synchronization between the input and the output of
the neuron, when the input consists of a train of pulses with
dynamically varying frequency. The phenomenon has been
reported both in numerical simulations of the Morris-Lecar
model, and in an experimental implementation of the
FitzHugh-Nagumo circuit. This behavior has been analyzed
in terms of the subthreshold dynamics of the neuron, and has
been seen to prevail in the presence of multiple synaptic
inputs and background noise. In fact, noise helps the neuron
to respond even when the stimulus is subthreshold for all
frequencies.
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